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Executive Summary 
This report corresponds to “Deliverable 2: Innovative Analytical Techniques” part of the project 
Advanced Planning of PV-Rich Distribution Networks with funding assistance by the Australian 
Renewable Energy Agency (ARENA) as part of ARENA's Advancing Renewables Program and led by 
the University of Melbourne in collaboration with AusNet Services. The project is established to develop 
analytical techniques to assess residential solar PV hosting capacity of electricity distribution networks 
by leveraging existing network and customer data. Additionally, planning recommendations will be 
produced to increase the hosting capacity using non-traditional solutions that exploit the capabilities of 
PV inverters, voltage regulation devices, and battery energy storage systems. 
 
This document focuses on the methodology and assessment of a smart meter-driven analytical 
technique proposed by The University of Melbourne to estimate PV hosting capacity in distribution 
networks; two significantly different HV feeders, urban and rural, are considered. This document starts 
with some additional modelling aspects relevant to the modelling of HV-LV feeders. Then, the smart 
meter data provided (by AusNet Services) for the purposes of this project are detailed. Given the 
importance of using large volumes of smart meter data to explore and understand the relations between 
customer data and network state under different PV penetration levels, a methodology to produce 
realistic (hybrid) smart meter data for a horizon of 5 years is proposed. Lastly, this report presents the 
proposed analytical technique that makes use of smart meter data to construct a statistical regression 
model for each LV network, in a given HV feeder, and estimate its corresponding PV hosting capacity. 
The performance of the proposed hosting capacity estimation (HC estimation) methodology is assessed 
under three different PV system uptake trends, as well as considering the effects of network controllable 
elements such as the zone substation OLTC.  
 
The key aspects of this report are summarised below. 
 
Smart Meter Data 

• Significant challenges related to data privacy and confidentiality issues prevented the facilitation 
of multiple days of historical smart meter data to The University of Melbourne. Nonetheless, 
efforts were made to provide 2 days’ worth of 5-min resolution encrypted and anonymised data 
from ~3000 residential customers for the Urban HV Feeder U2 (CRE21). 

• While the provided smart meter, data contain enough measurements (P, Q, V) from customers 
with PV system installations (20% of customers with PV systems), it was not possible to extract 
meaningful correlations between the PV penetration and its effects (i.e., voltage rise). This can 
only be captured by historical data that covers the evolution of PV penetration in time. 

 
Hybrid Smart Meter Data 

• Given the limited data availability, a methodology is proposed to produce a large volume of 30-
min resolution hybrid smart meter data for a horizon of 5 years and with progressive PV 
penetrations. Actual anonymised demand (P, Q) and irradiance profiles from a previous project 
“AusNet Mini Grid Clusters” were used to run unbalanced, 30-min resolution, time-series, three-
phase four-wire power flows for multiple days to extract customer voltages, V. In total, the 
database of the hybrid smart meter data (P, Q, V) produced for each HV-LV Feeder consists of 
more than 1 billion data points (>3Gb). 

• Leveraging statistical techniques, the hybrid smart meter data were analysed to extract potential 
daily correlations and hint the direction towards the analytical approach to be adopted. For each 
LV network, a very strong linear correlation was found between the maximum voltage on a given 
day and the corresponding sum of all smart meter active powers (P, which can be negative due 
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to PV systems). These two features were used as inputs to the proposed Smart Meter-Driven 
PV Hosting Capacity Estimation methodology.  

 
Smart Meter-Driven Hosting Capacity Estimation 

• Based on a simple, yet practical, machine learning algorithm, a methodology is proposed to 
produce a regression model to estimate the PV hosting capacity in any given LV network using 
smart meter data. The main steps of the methodology, as if implemented by a DNSP, are 
presented below. 

o Smart meter database. For a given number of days (ideally covering most of the 
evolution of PV penetrations to date), the daily smart meter data (i.e., P, Q, V) from all 
customers in a given LV network are extracted from the smart meter database. 

o Data Processing. The smart meter data are analysed and cleaned from missing and 
inconsistent values. Then, the maximum voltage recorded for each day is identified and 
the corresponding (same timestamp) active powers are added up. Finally, a new 
dataset is produced containing the maximum voltage and the corresponding 
aggregated power for each day. 

o HC Estimation Model. The new dataset is used to train a supervised (i.e., gradient 
decent) univariate regression model which corresponds to the HC estimation model for 
the analysed LV network. 

• HC Estimation. The model, in effect, estimates the aggregated active power (that can be 
negative due to PV systems) that can lead to voltages outside a pre-determined upper limit 
(e.g., 1.1 p.u.). This value, in turn, can be used to calculate the additional PV capacity that can 
be hosted by the LV network. Nonetheless, to understand what the HC Estimation might mean 
across customers, the estimated aggregated active power is presented as the diversified active 
power per customer. The latter also includes prediction limits to cater for uncertainties. 

• Accuracy. It is important to highlight that the volume of smart meter data used to produce the 
HC estimation model plays an important role. More data helps to capture the variance of a larger 
sample of network conditions (i.e., voltage vs active power), thus increasing the model’s 
estimation accuracy. 
 

Case Studies  
• The performance of the proposed HC estimation methodology is demonstrated and thoroughly 

assessed on two significantly different HV-LV feeders; urban and a rural. 
• The assessment considers three different PV uptake trends through a horizon of 5 years.  

o Random PV Uptake. New PV system installations are randomly allocated to customers 
within the LV networks. A random allocation of PV systems represents a very realistic 
scenario which is currently seen in practice (i.e., residential PV systems are adopted by 
customers located at different locations within the network).  

o Head to End PV Uptake. New PV systems are allocated first to customers closer to the 
head of the LV feeders and then moving towards those at the far end. While unlikely, it 
represents one of the two extreme scenarios. It leads to the highest PV hosting capacity 
as the effect of voltage rise is in general lower for points closer to the head of the feeder 
(i.e., smaller impedance, hence smaller voltage drop/rise). 

o End to Head PV Uptake. New PV systems are allocated first to customers at the far end 
of the LV feeders and then moving towards those at the head. While also unlikely, it 
represents the other extreme scenario. It leads to the lowest PV hosting capacity as the 
effect of voltage rise is in general higher for points farther from the head of the feeder 
(i.e., larger impedance, hence larger voltage drop/rise).  

• Urban Feeder U2 (CRE21) 
o Overall, it was found that the proposed methodology can provide meaningful and 

adequate HC estimations for this and similar urban feeders. In this case, such 
estimations were achieved from as early as 30% of PV penetration for the Random PV 
and End to Head PV uptake trends.  



   Advanced Planning of PV-Rich Distribution Networks 
Deliverable 2: Innovative Analytical Techniques 

UoM-AusNet-2018ARP135-Deliverable2_v02 
22nd October 2019 

 

Copyright © 2019 A.T. Procopiou and L. Ochoa - The University of Melbourne 4 
 

o For the Head to End uptake trend, it was found that early PV penetrations did not result 
in significant impacts, resulting in slight HC overestimations. This is primarily due the 
fact that customers expected to affect voltage rise the most (i.e., farthest customers) 
are the last installing a PV system; hence, the HC model cannot capture these effects 
until high PV penetration levels (i.e., >60%). Moreover, due to the relatively higher 
number of customers (>100) and feeders (>2) in urban LV networks, significant diversity 
can exist in terms of the LV feeders’ length and number of customers in the same 
network. This makes the estimation of HC more challenging in such uptake trend. For 
example, a new PV installation at the end of a long feeder with many customers might 
have a completely different voltage rise effect compared to another with shorter length 
and lower number of customers. 

o A further analysis using SCADA data from 2016 to represent the zone substation’s 
OLTC actions was carried out. Although these voltage changes might not capture how 
the CRE21 OLTC would in reality act with the different PV penetrations, it was found 
that it can slightly reduce the accuracy of the HC estimations. Furthermore, because of 
a higher number of outliers (voltage spikes), the ability of the HC estimation model to 
include them in the prediction limits reduces. 

• Rural HV Feeder R1 (SMR8) 
o Overall, it was found that the proposed methodology can have a much better 

performance in this and similar rural feeders as it is able to provide meaningful and 
adequate HC estimations from much earlier PV penetrations regardless the PV uptake 
trend. In this case, such estimations were achieved with as little as 20% PV penetration. 

o The higher accuracy of HC estimations at earlier PV penetrations can be explained due 
to the lower number of customers and feeders (up to 2) in rural LV networks. This means 
that the impacts of PV installations in a given LV network will evolve consistently, i.e., 
higher voltages will be seen with more PV installations (which is not the case in urban 
LV networks with multiple feeders due to the diversity in length and customer numbers). 
This consistency allows the HC estimation model to capture the effects more accurately 
and at earlier PV penetrations. 
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1 Introduction 
According to the Australian PV Institute, the aggregated installed capacity of solar PV in Australia is 
currently exceeding 6.5 GW, with many these installations being residential. The percentage of dwellings 
with solar PV varies from 12% in the Northern Territory to 30% in Queensland. This, combined with a 
growing number of commercial customers adopting the technology, will soon pose significant technical 
challenges on the very infrastructure they are connected to: the low voltage (LV) and high voltage (HV) 
distribution networks.  
 
Due to the rapid uptake of the technology, many Distribution Network Service Providers (DNSPs) across 
the country have adopted the use of PV penetration limits based on the capacity of the distribution 
transformers feeding LV customers. Once this limit is reached, complex and time-consuming network 
analyses are often required to determine the need for any mitigating action due to asset congestion or 
voltage rise issues (e.g., network augmentation, use of off-load tap changers).  
 
Whilst, in principle, the use of a PV penetration limit is a sensible approach to swiftly deal with many 
connection requests, the lack of advanced planning approaches has led DNSPs to adopt values that 
might under or over-estimate their actual hosting capacity, particularly due to voltage issues in LV 
networks and aggregated congestion issues in HV networks. Similarly, assessing the effectiveness of 
non-traditional solutions, such as actively controlling smart PV inverters or deploying distribution 
transformers fitted with on-load tap changers, becomes a task beyond typical planning studies carried 
out by DNSPs. All this, in turn, becomes a barrier for the widespread adoption of solar PV as it can 
create delays, increase cost, and could undermine the consumer attractiveness of the technology. 
 
To help remove the aforementioned barriers and accelerate the adoption of solar PV in Distribution 
Networks, this project is established to develop analytical techniques to rapidly assess residential solar 
PV hosting capacity of electricity distribution networks by leveraging existing network and customer 
data. Additionally, planning recommendations will be produced to increase the hosting capacity using 
non-traditional solutions that exploit the capabilities of PV inverters, voltage regulation devices, and 
battery energy storage systems. 
 
The report at hand is structured as follows: Chapter 2 provides some additional modelling aspects 
relevant to the modelling of HV-LV feeders. Then, in chapter 3 the smart meter data provided (by AusNet 
Services) for the purposes of this project are detailed. Given the importance of using large volumes of 
smart meter data to explore and understand the relations between customer data and network state 
under different PV penetration levels, a methodology to produce realistic (hybrid) smart meter data for 
a horizon of 5 years is also proposed. Chapter 4 presents the proposed analytical technique that makes 
use of smart meter data to construct a statistical regression model for each LV network, in a given HV 
feeder, and estimate its corresponding PV hosting capacity. The performance of the proposed hosting 
capacity estimation (HC estimation) methodology is assessed under three different PV system uptake 
trends, as well as considering the effects of network controllable elements such as the zone substation 
OLTC. Finally, conclusions and next steps are presented in Chapter 5 and 6 respectively. 
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2 HV-LV Feeders – Additional Modelling Aspects 
This chapter presents additional modelling aspects and assumptions for the HV-LV feeders presented 
in the report “Deliverable 1: HV-LV modelling of selected HV feeders” [1]. These updates, which are 
based on updated information and data provided by AusNet Services, correspond to an updated model 
of the Urban HV Feeder U2 (CRE21) and the operation of the HV capacitors.  

2.1 Urban HV Feeder U2 (CRE21) – Updated Model 
This section presents the topology and general characteristics of the updated Feeder U2 model. 
Furthermore, for demonstration purposes, this section presents a time-series power flow analysis of the 
updated HV Feeder U2 considering a peak demand day. These analyses are presented to understand 
the time-series behaviour of the updated HV feeder. 

2.1.1 Topology and General Characteristics 
Figure 2-1 shows the topology of the updated Feeder U2, along with its general characteristics. The 
topology of the feeder model remains exactly the same as the one presented [1] and the updated 
information, highlighted in red, is listed below: 
 

• The total number of residential LV networks is updated to 71 (79 in initial model). 
• The total number of residential customers supplied is updated to 3,374 (4,626 in initial model). 
• The total number of non-residential LV networks is updated to 9 (0 in initial model). 
• The total number of residential customers supplied is updated to 9 (0 in initial model). 

 

 
 

# of LV Residential Substations: 71 

# of LV Residential Customers: 3,374 

# of LV Non-Residential Substations: 9 

# of LV Non-Residential Customers: 9 

Distance of Farthest Transformer (km): 9 

# of HV Capacitors (900kVar each): 0 

# of SWER Transformers: 0 

# of REGULATOR Transformers: 0 

Total HV Conductors (km): 30 

Total HV SWER Conductors (km) 0 

Figure 2-1 Feeder U2 – Topology and General Characteristics 
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2.1.2 Business-as-Usual Analysis  
Load profiles for each customer are randomly selected and allocated based on the procedure described 
in section 4.1.1 of deliverable [2] for the day 15 January 2014 (considered to be the highest demand 
day in the pool of smart meter data). 
 
Figure 2-2 (a) shows the daily 30-min voltage profiles of all customers in U2. All profiles lie within the 
statutory voltage limits (i.e., 1.10 - 0.94p.u.). Given that the off-load tap position of all secondary 
distribution transformers is assumed to be at the nominal position (i.e., position 3), voltages during low 
demand (morning hours) are close to ~1.08p.u. However, during peak demand (late evening and night 
hours), when customers return home from work (and demand increases), voltages reduce to ~0.98p.u. 
While the new feeder model has a lower number of residential customers (i.e., 1252), a slightly lower 
voltage level is noticed when compared to the initial model. This can be explained given the fact that the 
new model considers 9 large non-residential loads (assumed to be ~2MWp commercial loads) which 
have a significant contribution to the voltage drop. 
 
Similar to initial model, it is also important to highlight that this specific case (peak demand) allows 
quantifying the maximum level of voltage drop that can be faced in this network and hence understand 
the available tap position foot-room for each distribution transformer (i.e., ability to reduce off-load tap 
position without resulting in violation of the lower voltage limit). For this HV feeder, a foot-room of 
approximately 0.05p.u. exists which can be translated into 2 off-load taps positions (2.5% per step). 
 
Considering the utilisation level of the assets (i.e., distribution transformers and HV lines), shown in 
Figure 2-2 (b) and (c), a similar behaviour to the initial model is also noticed. A higher utilisation is 
observed during peak demand (late evening and night hours) compared to the low demand during 
morning hours. All transformers (except a couple) and lines operate within their limits and the peak 
transformer and line utilisations are around ~67 and ~70%, respectively.  
 
It should be highlighted that the corresponding behaviour is observed because the demand profiles used 
correspond to the peak demand day, hence the utilisation level of the assets is expected to be high as 
well as the voltage profiles low. However, it should also be highlighted that the load profiles used, 
correspond to customers located in different geographical area than the studied network. Hence the use 
of these load profiles (residential and non-residential) might be overestimating the behaviour. 
 
To provide more understanding of the loading conditions of this case study, the monitored kVA power 
at the primary substation is presented in Figure 2-3 and the peak utilization level of the HV lines is 
demonstrated in Figure 2-4 considering a topology heatmap. In general, the updated model was found 
to have almost the same behaviour as with the initial model. 
 

 
(a) 

 
(b) 

 
(c) 
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Figure 2-2 Feeder U1 BaU: (a) Voltage profiles, (b) LV Transformers and (c) HV lines utilisation  
 

 
Figure 2-3 Feeder U2 BaU: Primary Substation Monitored Power (kVA) 

 

 

Figure 2-4 Feeder U2 BaU: Line Utilization Level Heatmap 

2.2 HV Capacitors – Updated Operation 
Based on updated information provided and discussions with by AusNet Services, all HV capacitors 
located in the Rural HV feeders (i.e., R1, R2) are now modelled with voltage-based operation (instead 
of time-based) so that their modelled operation is aligned with the current practice. In more details, the 
actions of any capacitor connected in an HV Feeder (operated by AusNet Services) are defined based 
on the voltage level measured at the connection point of the capacitor. 
 
Considering the above information, the capacitors are assumed to: 

• Switch on: if the voltage at the point of connection is equal of lower than 0.96p.u. This is 
expected to boost the voltage at the connection point as well as downstream voltages closer to 
1.0 p.u. 

• Switch off: if the voltage at the point of connection is equal of higher than 1.08p.u. This is 
expected to lower the voltage at the connection point as well as downstream voltages closer to 
1.0 p.u. 
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3 Smart Meter Data 
This chapter first presents a small volume (i.e., 2 days) of smart meter data (~3,000 residential 
customers), provided by AusNet Services, for one of the Urban HV Feeder U2 (CRE21). Then the 
importance of using large volumes of data in extracting correlations is highlighted along with the 
challenges facing to acquire additional larger sets of smart meter data. Then to tackle these challenges 
and help develop and validate those analytical techniques that can be used to estimate the Hosting 
Capacity of LV networks in a given HV feeder, a methodology is proposed to produce a large volume 
(i.e., 5-year, 30-min resolution) of smart meter data (referred here as hybrid smart meter data) for each 
customer in the modelled HV feeders. These smart meter data consider a realistic progressive adoption 
of PV systems (i.e., 0 to 100% of customers with PV, in a given HV feeder) through a horizon of 5-years. 
While hybrid smart meter data were produced for all modelled HV Feeders, for simplicity and 
demonstration purposes, the presentation of the produced hybrid smart meter data in this report, 
corresponds only to those of the Urban HV Feeder U2 (CRE21).  

3.1 Provided Smart Meter Data 
A small volume of smart meter data was facilitated by AusNet Services to the University of Melbourne. 
These correspond to encrypted and anonymised smart meter data of approximately 3,000 customers in 
the HV Feeder U2 (CRE21) [1] for two days: the peak (20 January 2019) and minimum (16 November 
2018) demand days between the year 2018-2019. For each day 5-min resolution measurements of 
active (P), reactive (Q) power and voltage (V) are provided for each smart meter (i.e., 288 values per 
day for each parameter). These data were processed and cleaned from missing and inconsistent values 
and then grouped by LV substation. For demonstration purposes Figure 3-1 shows the daily (a) voltage, 
(b) active and (c) reactive power profiles of all customers (total of 108) in a sample LV network with 
almost 20% solar PV penetration (i.e., percentage of customers with PV).  
 

 
(a) Voltage 

 
(b) Active Power 

 
(c) Reactive Power 

Figure 3-1 Smart Meter Data of all customers in a sample LV substation 
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While the provided data contain enough smart meter measurements from customers with PV system 
installations (20% of customers with PV system), extracting meaningful correlations between the 
evolution of PV generation, in this feeder, and the effects this might have (i.e., voltage rise) on the feeder 
was impossible to be achieved due to the limited number of days provided. This can only be captured 
by historical data that covers the evolution of PV penetration in time.  
 
While smart meter data from the residential customers, within the area of AusNet Services, are in 
general available, significant challenges related to data privacy and confidentiality issues prevented the 
facilitation of additional data. Thus, acquiring smart meter data specific to HV feeders proved to be more 
challenging than expected. 
 
To define and validate different analytical techniques to assess the PV hosting capacity for a given HV 
feeder a large volume (i.e., years) of high-resolution (e.g., scale of minutes) smart meter data (i.e., P, 
Q, V) is required. Such data, which cover the evolution of PV penetration in time, will allow extract 
correlations between customer data and solar PV generation, important to define those analytical 
techniques that can help assess the PV hosting capacity. 

3.2 Hybrid Smart Meter Data 
To tackle the aforementioned challenges and help develop and validate those analytical techniques that 
can be used to estimate the Hosting Capacity of LV networks in a given HV feeder, a methodology is 
proposed to produce a large volume (i.e., 5-year, 30-min resolution) of smart meter data (referred here 
as hybrid smart meter data) for each customer in the modelled HV feeders. These smart meter data 
consider a realistic progressive adoption of PV systems (i.e., 0 to 100% of customers with PV, in a given 
HV feeder) through a horizon of 5-years. 
 
For this purpose, a pool of 30-min resolution, year-long (i.e., 17,520 points), P and Q data from 
anonymized smart meters, collected from 342 individual residential customers in the year of 2014 is 
used. These data were facilitated to the University of Melbourne for the purposes of a previous projects 
with AusNet [2, 3]. Using this pool, the yearly demand and generation profiles were broken down in daily 
profiles, resulting in a pool of ~30,000 daily demand profiles and 90 daily generation profiles per season 
(total of ~12 million data points).  
 
For demonstration purposes sample demand and generation profiles are presented in Figure 3-2. 
 

 
(a) Customer Demand 

 
(b) PV generation 

Figure 3-2 Sample demand and PV generation (assuming 5kWp system) profiles  

This pool is then used to run unbalanced, 30-min resolution, time-series, three-phase four-wire power 
flows for multiple days (and years) covering various demand and generation scenarios for which the 
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corresponding P, Q and V of each customer are collected to create a rich and precise realistic smart 
meter database for each of the HV feeders modelled in [1]. 

3.2.1 Methodology 
To create a realistic smart meter database for each modelled HV feeder, power flow simulations were 
performed for a duration of 5 years where the penetration of solar PV (% of houses with PV) was 
progressively increasing from 0 to 100% throughout the years. This allows emulating the evolution of 
PV system integration and capturing their seasonal effects on the network, in a progressive manner.     
 
The process to produce these smart meter data is descripted below: 
  

1. For each customer, a random daily load profile is selected from the pool of daily load profiles 
corresponding and specific day of the year. 
 

2. Depending on the PV penetration level (PV%) residential PV systems are randomly allocated 
to LV customers without a PV system. The size of the PV panels is based on Australian 
installation statistics where the proportion of PV installations with 2.5, 3.5, 5.5, and 8kWp is 8, 
24, 52 and 16%, respectively. A realistic PV uptake is adopted by allowing uneven penetrations 
per LV networks and feeders as well as multiple PV installed capacities based on Australian PV 
installation statistics. 

 
3. PV generation profiles are selected from the pool of daily PV generation profiles corresponding 

to a specific day of the year. 
 

4. Unbalanced, 30-min resolution, time-series, three-phase four-wire power flows over a 24-hour 
period are carried out with OpenDSS. 

 
5. The P, Q, and V of each customer are collected for each 30-min point of the 24-hours. 

 
The process described above is repeated for 1,825 times each one representing a day of the 5-year 
horizon (i.e., 365 days x 5 years). The solar PV penetration growth (number of new PV installations) for 
each day is defined as the total number of customers in the HV feeder divided by the total number of 
simulation days (i.e., 1,825). In terms of the demand, no load growth is considered.   

3.3 Case Study – Urban HV Feeder U2 (CRE21) 
The methodology presented in the previous section was adopted to produce hybrid smart meter data 
for all 3,374 residential customers in the HV Feeder U2 (CRE21). For simplicity, the voltage at the head 
of the HV feeder is considered to be constant at 22 kV (1.0 pu) which corresponds to the voltage target 
setting used by the on-load tap changers (OLTCs) at the substation. Given the available voltage foot-
room shown in 2.1.2, and to match the voltage level (~1.05 early morning hours) as shown in the 
provided smart meter data (see section 3.1, Figure 3-1a), all LV transformer off-load taps are reduced 
by one step (i.e., set to position 2 effectively transforming to 420 V), leading to ~1.05p.u. of voltage on 
the secondary side of the LV transformer assuming no-load conditions.  
 
For this case study, the daily PV penetration growth for this feeder is defined as 0.06% and corresponds 
to approximately 2 new PV system installations per day. For example, a 20% penetration of solar PV is 
reached approximately on the 337th day (total of 1,825) of the analyses.  
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Once the simulation process is finished, a set of 87,600 P, Q and V points is created for each residential 
customer, representing 5-years’ (i.e., 30-min resolution) worth of smart meter data measurements (P, 
Q and V). For simplicity and ease of referencing, these data were timestamped in the form of YYYY-
MM-DD HH:MM:SS and given a range between 2018-01-01 00:00:00 to 2022-12-30 23:30:00. In total, 
the database of the hybrid smart meter data produced for the rural HV Feeder U2 (CRE21) consists of 
almost 1 billion data points (>3Gb). These will be used to produce analytical techniques to help estimate 
the corresponding PV Hosting Capacity in a given HV feeder (and LV substations).  

3.3.1 Visualization of Hybrid Smart Meter Data 
For demonstration purposes the smart meter data (P, Q, V) of all residential customers (total of 138) 
connected to one of the LV networks connected (number 24 in the database) are presented in Figure 
3-3 and Figure 3-4 for the days 2018-01-01 (0% PV) and 2022-10-30 (100% PV). As it can be observed, 
during the first simulation day, Figure 3-3, none of the customers have a PV system (all P values are 
positive – demand only) and all voltages are within the statutory limits. On the other hand, Figure 3-4 
shows a case where all customers have PV systems (i.e., negative P during midday – PV generation) 
while some of the customers experience voltages that go beyond the maximum statutory limit. 
Considering the reactive power, no significant differences are observed for either of the two cases. It is 
also important to highlight that the since the PV systems are assumed to operate at a unity power factor, 
reactive power is only affected by the load. These profiles, and behaviour, are aligned with the 
measurements of the provided smart meter data (see Figure 3-1). 
 

 
(a) Voltage  

 
(b) Active Power 

 
(c) Reactive Power 

Figure 3-3 LV 24: Sample Hybrid Smart Data (138 customers): day 2018-01-01 (0% PV) 

 
(a) Voltage 

 
(b) Active Power 

 
(c) Reactive Power 

Figure 3-4 LV 24: Sample Hybrid Smart Data (138 customers): day 2022-10-30 (100% PV) 
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To provide more understanding of the produced smart meter database for each of the LV substations 
figures Figure 3-5 , Figure 3-6 and Figure 3-7 are provided to help visualize the evolution of data due to 
the solar PV penetration through the simulation years.  
 
Figure 3-5, presents the maximum and minimum measured voltage (considering all customer voltages) 
for each 30-min point of the 5-year analysis. This allows visualizing the effect of increased PV 
penetration through the years which essentially pushes both the maximum and minimum voltages to 
higher levels as the time passes (i.e., higher number of PV systems; hence more generation).  
 

 

Figure 3-5 LV 24: Evolution of Maximum and Minimum Voltage 

 
Indeed, as shown in Figure 3-6, which presents the aggregated active power of all customers in the 
corresponding substation, for each 30-min point of the 5-year analysis, a similar trend is noticed as with 
the voltages. The magnitude of the aggregated kW is progressively increasing through the years as a 
result of the increasing PV penetration.  
 

 

Figure 3-6 LV 24: Evolution of Aggregated Active Power (kW)  

While voltages and aggregated power are progressively increasing in magnitude through the years, the 
aggregated reactive power (Figure 3-7) is kept at similar magnitude levels throughout the whole 5 years. 
This can be explained since the PV systems are assumed to operate at a unity power factor which is 
also aligned with the reactive power measurements presented in the provided smart meter data (see 
Figure 3-1). 
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Figure 3-7 LV 24: Evolution of Aggregated Reactive Power (kVar)  

3.3.2 Correlation of Hybrid Smart Meter Data 
A key component in defining the most suitable analytical technique, is to understand the relation and 
potentially correlation of the corresponding parameters of the smart meter data. As briefly highlighted in 
the previous subsection a similar trend was observed on the maximum and minimum voltage evolution 
(Figure 3-5) with the aggregated active power evolution (Figure 3-6). However, the extent to which these 
datasets are related, needs to be statistically defined to hint the direction towards the analytical approach 
to be adopted.  
 
For this, a widely used statistical method, the Pearson product-moment correlation (PPMC) coefficient, 
was adopted to measure of any linear correlation between the smart meter data parameters. Given that 
the PV Hosting Capacity in a given LV network is defined by the maximum customer voltage, this section 
tries to show the correlation of the maximum voltage (considering all customers in an LV network) with 
the aggregated active and reactive power. The minimum voltage is also considered for completeness.  
 
The PPMCC, as defined in (1), is the covariance of any two sets of variables (i.e., 𝑋 and 𝑌) divided by 
the product of their standard deviations (𝜎𝑋 and 𝜎𝑌) and ranges between +1 and −1, where: 

• -1 indicates that the two variables are perfectly negatively linearly related. 
• 0 means that two variables don't have any linear relation.  
• 1 means that two variables are perfectly positively linearly related. 

 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 ⋅ 𝜎𝑌

=
∑ (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋)2𝑛
𝑖=1  ×  √∑ (𝑌𝑖 − 𝑌)2𝑛

𝑖=1

 (1) 

 
The PPMC coefficient of the smart meter data was calculated for all LV substations in the HV Feeder 
U2 (CRE21) [1] and the average coefficient values of the statistical analysis are provided in Figure 3-8, 
in a heatmap form. As observed, a very strong negative correlation (i.e., -0.94 and -0.92) exists between 
the aggregated active power and the corresponding maximum and minimum voltages. In other words, 
these parameters can be described by a negative linear relationship; the higher the PV generation (i.e., 
negative aggregated power) the higher the maximum voltage. On the other hand, the reactive power 
has a very weak correlation with the voltage.  
 
Given the strong correlation between voltages (i.e., maximum and minimum) and the aggregated active 
power of all smart meters, these will be used in the next chapter as inputs to a proposed Smart Meter-
Driven PV Hosting Capacity Estimation methodology.  
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Figure 3-8 HV Feeder U2 (CRE21): Pearson Correlation of Smart Meter Data 
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4 Smart Meter-Driven Hosting Capacity Estimation 
This chapter presents a proposed methodology to estimate the solar PV hosting capacity in any given 
LV network using smart meter data. Based on a simple -yet practical- machine learning algorithm with 
supervised learning, a univariate regression model is produced to estimate the maximum voltage level 
in a given LV network based on its state (i.e., aggregated active power). Then to demonstrate the 
proposed methodology an example is presented along with several performance related metrics and 
important aspects that should be taken into consideration when the methodology is adopted. Finally, 
two thorough case studies are presented where the proposed methodology is adopted on two very 
different feeders, the Urban HV Feeder U2 and the Rural HV Feeder R1. In both case studies, the 
methodology is adopted in all LV networks connected to each of the feeder and results are presented 
only for one of the LV networks. The overall performance is discussed considering all LV networks.   

4.1 Methodology 
Figure 4-1 presents the flow chart of the proposed methodology and the main steps are detailed below: 
 

1. Smart meter database. In this step, the daily smart meter data (i.e., P, Q, V) from all customers 
(indexed 𝑖) in a given LV network are extracted from the smart meter database.  
 

2. Data Processing. In this step, the smart meter data are analysed and cleaned from missing and 
inconsistent values. Then, the maximum voltage recorded for each day is identified and the 
corresponding (same timestamp) active powers are added up. Finally, a new dataset is produced 
containing the maximum voltage and the corresponding aggregated power for each day. 

 

3. Model Production. The new dataset is used to train a supervised (i.e., gradient decent) univariate 
regression model i.e., 𝑦 = 𝑎𝑥 + 𝑐, where 𝑦 is the dependant variable (i.e., maximum voltage), 𝑥 is 
the dependant variable (i.e., aggregated active power) and 𝑐 is the y-axis intercept. 

 

a. First the dataset is spitted in two subsets: the training (75% of dataset) and test (15% of 
dataset) subsets.  

b. The training subset is used to train the model by adopting a gradient decent optimization 
algorithm to find the minimum of the loss function (i.e., mean square error of each predicted 
value of 𝑦 and 𝑥). 

c. Once the training is finished, the test subset is used to evaluate the 𝑅2 performance of the 
trained model. 𝑅2 is a statistical measure that describes the percentage (0 to 100%) of the 
dependent variable variation been explained (correctly predicted) by the trained model. In 
general, the higher the 𝑅2, the better the model can predict the dependant variable (i.e., 
maximum voltage) given an independent variable (i.e., aggregated active power).  

 

4. HC Estimation Model.  At this step the final HC estimation model can be used to estimate the 
hosting capacity of the corresponding LV network. An example of the HC Estimation model is given 
in section 4.2. 

 

 
Figure 4-1 Smart Meter-Driven Hosting Capacity Estimation Flow chart 
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4.2 HC Estimation Model Demonstration  
This section provides a demonstration example of the HC Estimation model and how this can be used 
to estimate the corresponding HC in an LV network. An example of the HC Estimation Model is 
presented in Figure 4-2 which for simplicity and demonstration purposes the model is trained using 
limited volume of smart meter data. First, the most important elements of the model are described. Then 
the process to estimate the corresponding HC is detailed along with its estimation performance. Lastly, 
the importance of the training data volume has on the model accuracy is discussed and demonstration 
examples are provided. 
 

 
Figure 4-2 HC Estimation Model demonstration example 

4.2.1 Parameter Description 
• Y-axis. Corresponds to the daily maximum voltage (p.u.) of all customers in the LV network. 
• X-axis. Corresponds to the diversified imports/exports (kW) in the corresponding LV network. 

The diversified imports/exports (kW) correspond to the LV network aggregated active power 
(i.e., net demand) divided by the total number of customers connected to the LV network. While 
the model, in effect, estimates the aggregated active power, this is presented as a diversified 
value (per customer) in order to understand what the HC estimation might mean across 
customers. It is important to highlight that a positive value here represents power exports (i.e., 
demand lower than PV generation hence reverse power flow) and a negative value represents 
power imports (i.e., demand higher than PV generation).  

• Smart Meter Data. Corresponds to the actual smart meter measurements and are denoted with 
a blue circle marker.   

• Model. Corresponds to the trained regression fit model (𝑦 = 𝑎𝑥 + 𝑐), that allows estimating the 
maximum voltage (𝑦) in the LV network for a given value of diversified active power (𝑥). 

• Performance. Corresponds to the 𝑅2 performance of the trained model.  In general, the higher 
the 𝑅2, the better the model can predict a dependant variable (i.e., maximum voltage) given an 
independent variable (i.e., aggregated active power). While this metric provides an overall value 
of the model performance, other metrics (i.e., prediction limits, confidence band) should also be 
considered to understand the level of estimation accuracy.  

• Prediction limits. Corresponds to the 99% upper and lower prediction limits of the trained 
regression model and are denoted with a dashed grey line. In other words, the estimated 
maximum voltage has a 99% probability to lie between the upper and lower prediction limits.  

• Confidence band. Corresponds to the 99% confidence level of the estimated maximum 
voltages. In other words, this band shows there is a 99% confidence that, in average, the 
maximum voltage considering different scenarios (generation, demand) will be within this band. 
It is important to note that the smaller the band, the more accurate is the trained model. 
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• HC Estimations. Corresponds to the estimated Hosting Capacity (i.e., diversified active power 
that leads to a maximum voltage of 1.1p.u). Three values are provided and correspond to: 

o 𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙 The HC directly estimated by the model. 
o 𝑋ℎ𝑐−99ℎ𝑖𝑔ℎThe HC considering the upper 99% prediction limit. 
o 𝑋ℎ𝑐−99𝑙𝑜𝑤 The HC considering the lower 99% prediction limit. 

The 𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ  and 𝑋ℎ𝑐−99𝑙𝑜𝑤 can be considered as the range of possible HC estimations with 
the former representing a conservative estimation while the latter a more optimistic one. The 
𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙, lies between the two. 

4.2.2 HC Estimation 
For a given LV network the HC estimation model can be used to estimate the hosting capacity for any 
LV network. Using the demonstration example shown in Figure 4-2, the HC (i.e., 𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙) of this 
example LV network (i.e., 138 customers) is estimated to be 6.68kW (diversified exports) per customer 
which corresponds to 921kW (6.68 x 138 customers) of aggregated active power exports. In other 
words, this LV network is estimated to host up to 921kW of solar PV installed capacity.  
 
From the planning perspective, this number can be used along with available information regarding the 
already installed solar PV capacity to speed up new PV connection requests. For example, using the 
estimated HC and the already installed solar PV capacity, the additional cumulative solar PV capacity 
that can be accommodated in an LV network can be estimated and used to quickly assess new PV 
installation requests. 

4.2.3 Accuracy 
While any model can be used to estimate the corresponding HC in an LV network it is important to take 
into account its estimation accuracy. Considering the demonstration example in Figure 4-2, which is 
trained using a significantly low number of data points (10 days), it is observed, and as expected, that 
the 𝑅2 performance is extremely low (47%) showing a very poor estimation accuracy.  
 
While the 𝑅2 provides an overall value of the corresponding performance it is important to look at the 
model prediction limits and confidence level band, as these metrics allow understanding the level of 
accuracy of the corresponding estimations. For the same example, the significantly large distance 
between the prediction limits as well as the large confidence level band show that the estimation 
accuracy is reducing for values lying further than the smart meter data measurements (i.e., used for the 
model training). Indeed, the large distance between the model prediction limits is leading to an extremely 
large (and technically infeasible) HC estimation range i.e., 𝑋ℎ𝑐−95ℎ𝑖𝑔ℎ = 3.33𝑘𝑊 and 𝑋ℎ𝑐−95𝑙𝑜𝑤 =

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑘𝑊. 
 
As briefly mentioned in the previous sections, this poor performance is due to the low number of data 
points used to train the model and hence the confidence level of any prediction is low. Thus, the volume 
of training data plays an important role to the model’s performance (see section below). 

4.2.4 Volume of Training Data 
To understand the importance the volume of training data has on the model’s performance, Figure 4-3 
is provided which compares the demonstration example model (i.e., trained on 10 days’ worth of data) 
with two other models trained on 20 and 100 days’ worth of data, respectively.  
 
As observed, increasing the volume of training data can increase the overall performance (𝑅2) of 
estimation model. Considering the model trained using 20 days’ worth of data, the 𝑅2 performance 
increased from 0.47 to 0.75, while the same number increased to 0.78 when 100 days are used for the 
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corresponding training. While a smaller improvement in 𝑅2 performance is observed between the 20- 
and 100-days cases, it’s important to highlight the performance improvement in terms of the prediction 
limits and the confidence level band. 
 
For example, considering the prediction limits, a larger volume of training data is helping to reduce the 
overall distance between the two limits; hence the HC Estimation range (i.e., 𝑋ℎ𝑐−95ℎ𝑖𝑔ℎ  and 𝑋ℎ𝑐−95𝑙𝑜𝑤). 
To be more exact, and for this case, the use of 100 days’ worth of data shows that the distance of 
between the  𝑋ℎ𝑐−95ℎ𝑖𝑔ℎ and 𝑋ℎ𝑐−95𝑙𝑜𝑤, reduced by a four-fold compared to the case where 20 days’ 
worth of data are used to train the model. Moreover, as observed, a larger volume of training data can 
help keep the distance between the two prediction limits almost constant for estimations that lie outside 
or further to the training data. 
 
More importantly, as Figure 4-3 shows, a larger volume of training data also improves the model’s 
estimation confidence level. While the confidence level of any model is expected to be high (i.e., small 
band) for estimations that are statistically closer to the training data (i.e., smart meter data), this reduces 
(i.e., larger band) for any estimations that are outside or further to the training data. The use of larger 
volume of training data, helps capturing the variance of a larger sample of network conditions (i.e., 
voltage vs active power), thus increasing the confidence of the model’s estimation accuracy. 

 

 

Figure 4-3 HC Estimation Model: Importance of training data volume 

4.3 Case Study 1 – Urban HV Feeder U2 (CRE21) 
This section presents a case study performed on the urban HV Feeder U2 (CRE21) considering the 
proposed Smart Meter-Driven hosting capacity estimation methodology. The performance and ability to 
estimate the HC capacity of LV networks with the proposed methodology is assessed using 5-year 
hybrid smart meter data produced using the approach detailed in chapter 2. To thoroughly assess the 
performance of the proposed HC estimation three hybrid smart meter datasets are produced considering 
three different PV uptake trends through the horizon of 5-years. These are listed below:  
 

a) Random PV Uptake. New PV system installations are randomly allocated to customers within 
the LV networks. A random allocation of PV systems represents a very realistic scenario which 
is currently seen in practice (i.e., residential PV systems are adopted by customers located at 
different locations within the network).  

b) Head to End PV Uptake. New PV systems are allocated first to customers closer to the head 
of the LV feeders and then moving towards those at the far end. While unlikely, it represents 
one of the two extreme scenarios. It leads to the highest PV hosting capacity as the effect of 
voltage rise is in general lower for points closer to the head of the feeder (i.e., smaller 
impedance, hence smaller voltage drop/rise). 

   

100 days data10 days data 20 days data
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c) End to Head PV Uptake. New PV systems are allocated first to customers at the far end of the 
LV feeders and then moving towards those at the head. While also unlikely, it represents the 
other extreme scenario. It leads to the lowest PV hosting capacity as the effect of voltage rise 
is in general higher for points farther from the head of the feeder (i.e., larger impedance, hence 
larger voltage drop/rise). 
 

Lastly, the effects of controllable elements such as the Zone Substation OLTC are also incorporated to 
assess the performance of the proposed HC estimation methodology.  
 
While the case study considered all 71 residential LV networks connected in the HV Feeder U2 (CRE21), 
for demonstration purposes, detailed results are provided only for the LV Network 24, which supplies 
138 residential customers through four feeders connected on a 500kVA transformer. The overall 
performance considering all 71 LV networks is given in Table 4-3.  

4.3.1 Random PV Uptake 
To assess the performance of the proposed methodology, the estimation model is constructed at 
different penetration levels of solar PV and the corresponding HC (i.e., amount of aggregated/diversified 
kW leading to 1.1 of maximum voltage) of the LV network is estimated to understand the extent to which 
penetration level the proposed HC estimation methodology can provide meaningful results.  
 
Considering all smart meter data for this LV network, on average, the HC found to be 320kW of exports 
(2.32kW diversified), and this value is used to assess the performance of the HC estimation model. 
Additionally, for comparison purposes, the aggregated power of the fist voltage violation (i.e., 313kW-
aggregated/2.27kW-diversified exports) is considered understand the extent to which the model’s 
prediction limits cover potential outliers (i.e., worst case scenario). These are also shown in Table 4-1. 

Table 4-1 LV 24 – Random PV Uptake: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 2.32 320 60 

First Voltage Violation 
(worst case) 

2.27 313 57 

 
Figure 4-4, presents the HC estimation models constructed at different penetration levels (10 to 100%, 
steps of 10%). For example, for a given X% penetration level, the model is constructed with all smart 
meter data from day 1 (0%) until the day were X% of customers have a solar PV. This process is trying 
to emulate real-life case scenarios where the user (e.g., DNSP) can use all available smart meter data 
(in a given LV network) until the current day (i.e., representing an X% penetration level) to construct the 
Smart Meter-Driven HC Estimation Model. For clarity and additional information all smart meter data 
points, shown in Figure 4-4, are colour-coded based on their distance from the LV transformer. This 
allows understanding where each maximum voltage point is located within the network. The numerical 
results and performance of each model is given in Table 4-2. 
 
As it can be observed, the magnitude of the daily maximum voltage is increasing with the penetration 
levels and around 60% of PV penetration level, the total aggregated power is leading to voltages that 
violate the upper statutory limit (i.e., 1.1 p.u.). Considering the location (i.e., colour of data points) of the 
maximum voltage , Figure 4-4 shows that this is varying through the days as new PV system are installed 
in different locations within the network (i.e., random uptake). For example, while at a given day the 
maximum voltage location could be located at a customer with a PV system in the middle of an LV 
feeder, a new PV system installation of the same size located at the end of the feeder might lead to 
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larger voltage rise due to the larger electrical distance (i.e., higher impedance between the head of the 
feeder and the customer). On the other hand, a new larger PV system installation closer to the head of 
another LV the feeder (connected to the same LV transformer) might lead to higher voltage rise. This 
effect is in fact more obvious at low penetration levels (below 50%) where the number of customers with 
PV systems is low, hence the location and size of every new PV system installation can affect the 
location of the maximum voltage. At larger penetration levels (above 50%), where more and more PV 
systems are likely to be installed further to the LV transformer, the location of the maximum voltage is 
shown to be always located closer to the end of the feeders (i.e., red colour). 
 

 

 

Figure 4-4 LV 24 – Random PV Uptake: HC Estimation at different PV penetrations 

Considering the performance, Figure 4-4 and Table 4-2, show that the accuracy error (i.e., percentage 
difference of estimation from actual) of the models up to 30% of penetration level is high, highlighting 
that the estimated HC is not very accurate. This low accuracy is partly because the number of PV 
systems at this penetration level might still not be enough to affect the state of the network (i.e., reverse 
power flows), hence these interactions not captured in the corresponding model. Nonetheless, while 
these errors do not go beyond 42%, from 30% onwards, the performance of the models increases 
significantly, and the accuracy error drops below 18% for all penetrations. This can be explained as the 
effect of larger number of PV systems in the network is now captured by the models and the estimations 
are closer to the actual average HC.  

Table 4-2 LV 24 – Random PV Uptake: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 
3.23 2.81 3.19 2.69 2.69 2.45 2.47 2.33 2.27 2.29 

Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [2.69-3.91] [2.39-3.23] [2.73-3.67] [2.25-3.13] [2.19-3.21] [1.93-2.97] [1.93-2.99] [1.79-2.89] [1.69-2.83] [1.71-2.87] 

Average Actual HC within 
HC Estimation range? NO NO NO YES YES YES YES YES YES YES 

First voltage violation within 
HC Estimation range? NO NO NO YES YES YES YES YES YES YES 

Accuracy Error (%) 
Estimated HC vs Actual HC 42 24 40 18 18 8 9 2 0 1 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

446 388 440 371 371 338 341 322 313 316 

 

EndMiddleHead
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It is important also to highlight, that while the model is providing an estimated HC, 𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙, this is 
accompanied by an estimation range, [𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤], aiming at capturing potential estimation 
errors. For example, considering the first voltage violation (i.e., 1.107p.u.) recorded in by the smart 
meters (occurred at around 57% of PV penetration), the corresponding aggregated power for this case 
(313kW of exports) was successfully captured within the models’ HC estimation range as early as 30% 
of PV penetration level. Considering the aforementioned, 𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ could be considered as a more 
conservative HC estimation that can be used to cater for the corresponding estimation errors. 
 
To understand the overall performance of the proposed methodology, the average accuracy error of the 
estimated HC is calculated for each penetration level and for all LV networks that experienced voltage 
violations (total of 25). Moreover, for each penetration level, the percentage of LV networks for which 
the HC estimation range successfully covered the actual average HC (calculated using smart meter 
data) and the first voltage violation, are provided. In general, the average accuracy error is aligned with 
the results shown in Table 4-2, where the error appears to be high for low penetration levels and reduces 
with higher penetrations. Overall, it was found that the proposed methodology can provide meaningful 
estimations from 30% of PV penetration and onwards. In more details, at 30% penetration, the actual 
HC for 65% of the networks was included in the proposed methodology estimation range, while the 
same number increased to 78% and 83% for 40 and 50% PV penetrations, respectively. More 
importantly, a very similar performance is observed for the case of first voltage violation, which shows 
that the proposed methodology can cover potential outliers (i.e., worst case scenario). 

Table 4-3 All LV Networks – Random PV Uptake: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 39 40 34 21 18 11 8 5 4 4 

Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
48 30 65 78 83 96 100 100 100 100 

Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

44 22 60 72 80 96 100 100 100 100 

4.3.2 Head to End PV Uptake 
Similar to the section 4.3.1, the analysis was performed considering a head to end PV uptake trend 
where the new PV systems are allocated first to customers located closer to the head of the LV feeders 
and lastly to the customers located at the far ends. Given that the effect of voltage rise is in general 
lower for points closer to the head of the feeder (i.e., smaller impedance, hence smaller voltage 
drop/rise), the HC capacity of the LV network was expected to be larger than the random PV uptake 
case. Indeed, as Table 4-4 shows, the average HC capacity was found to be to be 362kW of exports 
(2.63kW diversified), while the aggregated power of the fist voltage violation was 349kW (2.53kW 
diversified) exports. In general, such PV uptake trend, compared to the previous, led to almost 20% 
more customers with a PV system. These numbers of HC are then used to assess the performance of 
the proposed methodology in the unlikely scenario of such PV uptake trend. 

Table 4-4 LV 24 – Head to End PV Uptake: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 2.63 362 80 
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First Voltage Violation 
(worst case) 

2.53 349 73 

 
Like the previous section, Figure 4-5, presents the HC Estimation models constructed at different 
penetration levels (10 to 100%, steps of 10%) with smart meter data points being colour-coded 
according to their distance from the LV transformer. The numerical results and performance of each 
model is given in Table 4-5. 
 
While the magnitude of the daily maximum voltage, in this case, shows to have the same behaviour as 
the previous case (increasing with the penetration levels), the voltage rise effect from penetration to 
penetration is significantly smaller. As a result of this, the PV penetration level leading to voltages that 
violate the upper statutory limit (i.e., 1.1 p.u.) is shifted to 80% (i.e., 20% more than previous case). 
Considering the location (i.e., data points colour) of the maximum voltage, Figure 4-5 shows that this is 
starting from a blue colour and slowly transitioning to a red colour at higher penetration levels. This 
colour transitioning (i.e., maximum voltage location) is the effect of new PV installations happening 
systematically to those customers located closer to the head of the feeders and slowly moving to the 
next customers until a 100% penetration is achieved. For example, considering a 0% penetration level, 
a new PV system installation will happen at the first customer located closest to the head of the feeder. 
Given that no other customers further to this one has a PV system, the maximum voltage (due to 
generation) will most likely recorded at that corresponding location (i.e., head of the feeder - blue colour), 
until the next PV installation, further to this customer, will happen; larger electrical distance from the 
head, hence voltage rise. Thus, considering this, the location of the maximum voltage is moving from 
the head (blue) to the end (red) of the feeder as the penetration of PV systems increases.   
 

 

 

Figure 4-5 LV 24 – Head to End PV Uptake: HC Estimation at different PV penetrations 

Considering the performance, Figure 4-5 and Table 4-5, show that the proposed method is 
overestimating the corresponding HC with an average accuracy error of ~20% (i.e., percentage 
difference of estimation from actual) until very high penetration levels (>70%) which drops. While a low 
performance is observed in this case, it should be noted that this mainly because of this unlikely uptake 
trend scenario where the customers with the largest effect in voltage rise (farthest), are assumed to 
install a PV system last; hence the HC model cannot capture these effects until high PV penetration 
levels. For example, up to 70% of penetration level, the smart meter data show a very strong linear 
behaviour which is perfectly captured by the corresponding HC Estimation models. Up to this penetration 

EndMiddleHead



   Advanced Planning of PV-Rich Distribution Networks 
Deliverable 2: Innovative Analytical Techniques 

UoM-AusNet-2018ARP135-Deliverable2_v02 
22nd October 2019 

 

Copyright © 2019 A.T. Procopiou and L. Ochoa - The University of Melbourne 27 
 

level, where ~96 customers (out of 138) are allocated a PV system, the last 42 customers are mostly 
located at remote areas with significantly larger electrical distance than the other customers already 
having a PV system. Thus, additional PV system installations at these customers have a larger effect 
on the voltage rise; hence the corresponding voltage jump from 70% penetration onwards.  

Table 4-5 LV 24 – Head to End PV Uptake: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 
3.11 2.89 3.17 3.31 3.33 3.35 3.21 2.87 2.77 2.69 

Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [2.59-3.77] [2.61-3.21] [2.83-3.51] [2.97-3.67] [2.97-3.71] [2.97-3.71] [2.81-3.63] [2.23-3.51] [2.13-3.41] [2.03-3.37] 

Actual HC within 
HC Estimation range? 

YES YES NO NO NO NO NO YES YES YES 

First voltage violation within 
HC Estimation range? NO NO NO NO NO NO NO YES YES YES 

Accuracy Error (%) 
Estimated HC vs Actual HC 

18 9 20 25 26 27 22 9 5 2 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

429 399 437 457 460 462 443 396 382 371 

 
In terms of the overall performance of the proposed methodology for this particular case, Table 4-6, 
shows that indeed the average accuracy error, considering all LV networks that experience voltage 
violations (total of 25), was fairly high (i.e., >30%) until relatively high penetration levels (i.e., 50%). 
Moreover, the percentage of the LV networks where their average HC and first voltage violation was 
included in the proposed methodology estimation range was found to be low (less than 30% of networks) 
for all penetrations until 50%. While a low performance is observed for this case, it should be highlighted 
that this is based on a PV uptake trend scenario that is unlikely to be seen in practice. Moreover, 
although an overestimation of the HC is observed, it is important to note that the actual HC capacity of 
these LV networks was in average ~70%, where at this penetration level the performance of all 
estimation models was good enough to provide meaningful estimations. It should also be noted that this 
effect is also due to the relatively higher number of customers (>100) and feeders (>2) in urban LV 
networks which can lead to significant diversity in terms of the LV feeders’ length and number of 
customers in the same network. This makes the estimation of HC more challenging in such uptake trend. 
For example, a new PV installation at the end of a long feeder with large number of customers might 
have a completely different voltage rise effect compared to another with shorter length and lower number 
of customers. Additional discussion of this effect is provided in section 4.4 which considers a Rural HV 
Feeder supplying mostly LV networks with low number of customers (<100) and feeders (<2). 
 
Considering the aforementioned, care should be taken when the proposed approach is adopted in such 
cases. 

Table 4-6 All LV Networks – Head to End PV Uptake: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 35 37 37 39 34 26 20 11 7 5 

Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
41 30 22 19 30 56 63 96 100 100 

Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

26 15 11 11 22 52 70 96 100 100 
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4.3.3 End to Head PV Uptake 
Similar to the section 4.3.1 and 4.3.2, the analysis was performed considering an end to head PV uptake 
where the new PV systems are allocated first to customers located at the far end of the LV feeders and 
lastly to the customers located at the head. Given that the effect of voltage rise is in general higher for 
points further to the head of the feeders (i.e., larger impedance, hence larger voltage drop/rise), the HC 
capacity of the LV network was expected to be lower than the previously shown PV uptake cases (i.e., 
random and head to end). Indeed, as Table 4-7 shows, the average HC capacity was found to be to be 
248kW of exports (1.8kW diversified), while the aggregated power of the fist voltage violation was 
237kW (1.7kW diversified) exports. In general, such PV uptake trend led to almost 10% and 30% less 
customers with a PV system compared to the random and head to end uptake cases, respectively. 
These numbers of HC are then used to assess the performance of the proposed methodology in the 
extreme scenario of such PV uptake trend. 

Table 4-7 LV 24 – End to Head PV Uptake: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 1.8 248 50 

First Voltage Violation 
(worst case) 

1.7 237 47 

 
As performed also in the previous sections (4.3.1 and 4.3.2), Figure 4-6, presents the HC Estimation 
models constructed at different penetration levels (10 to 100%, steps of 10%) with smart meter data 
points being colour-coded according to their distance from the LV transformer. The numerical results 
and performance of each model is given in Table 4-8. 
 

 

 

Figure 4-6 LV 24 – End to Head PV Uptake: HC Estimation at different PV penetrations 

While the magnitude of the daily maximum voltage, in this case, shows to have the same behaviour as 
the previous cases (increasing with the penetration levels), the voltage rise effect from penetration to 
penetration is significantly larger. As a result of this, the PV penetration level leading to voltages that 
violate the upper statutory limit (i.e., 1.1 p.u.) is reached as early as 50%. Considering the location (i.e., 

EndMiddleHead
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data points colour) of the maximum voltage, Figure 4-6 shows that this is always located at the end of 
the feeders (red colour) regardless the penetration level. This is indeed expected given that the farthest 
customers, which are more likely to experience a higher voltage rise than any other customer in the 
network, are those that first install a PV system. Thus, since all other new PV system installations will 
always have a smaller electrical distance, than the ones already installed (at the farthest points), the 
location of the maximum voltage point is expected to be the same regardless the new installations.  
 
Considering the performance, Figure 4-6 and Table 4-8, show that the proposed method achieves a low 
error regardless the penetration level. To be more exact, the error is always kept below 17% and 
significantly reduces to 10% as early as 30% of penetration level and drops even further for higher 
penetrations. This performance can be explained since the HC estimation model is capturing from very 
early penetration levels, the effects of those customers that are contributing the most to the voltage rise. 
Moreover, it should be noted that the first voltage violation (i.e., 1.104p.u.) recorded in by the smart 
meters (occurred at around 47% of PV penetration), the corresponding aggregated power for this case 
(237kW of exports) was successfully captured within the models’ HC estimation range as early as 10% 
of PV penetration level. 

Table 4-8 LV 24 – End to Head PV Uptake: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 1.47 1.99 1.87 1.61 1.59 1.63 1.71 1.79 1.87 2.01 

Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [0.95-2.15] [1.45-2.59] [1.29-2.49] [1.11-2.11] [1.11-2.07] [1.15-2.13] [1.17-2.25] [1.19-2.37] [1.19-2.57] [1.13-2.89] 

Actual HC within 
HC Estimation range? YES YES YES YES YES YES YES YES YES YES 

First voltage violation within 
HC Estimation range? YES YES YES YES YES YES YES YES YES YES 

Accuracy Error (%) 
Estimated HC vs Actual HC 14 17 10 5 6 4 1 5 10 18 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

203 275 258 222 219 225 236 247 258 277 

 
Considering the overall performance, the average accuracy error is aligned with the results shown in 
section 4.3.1, where the error appears to be higher for low penetration levels and reduces with higher 
penetrations. This, as previously discussed, is because a larger number of PV systems in the network 
helps capture their effects in the estimation model; hence increase the corresponding accuracy. Overall, 
it was found that the proposed methodology can provide meaningful estimations from 30% of PV 
penetration and onwards. In more details, at 30% penetration, the actual average HC for 81% of the LV 
networks was included in the proposed methodology estimation range, while the same number 
increased to 96% and 100% for 40 and 50% PV penetrations, respectively. More importantly, a very 
similar performance is observed for the case of first voltage violation, which shows that the proposed 
methodology can cover potential outliers (i.e., worst case scenario). 

Table 4-9 All LV Networks – End to Head PV Uptake: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 38 33 27 19 14 10 7 6 5 8 

Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
52 63 81 96 100 100 100 100 100 100 
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Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

63 59 67 89 100 100 100 100 100 100 

 
 

4.3.4 Effects of Zone Substation OLTC  
The last three sections assess the performance of the proposed methodology under three different PV 
uptake cases, one realistic (i.e., random) and two extreme (i.e., head-to-end and end-to-head). All 
cases, however, were performed considering the voltage at the head of the HV feeder to be constant at 
22 kV (1.0 pu) which corresponds to the voltage target setting used by the on-load tap changer (OLTC) 
at the zone substation. While the latter is considered a valid and realistic assumption, it is worth 
understanding the effect that the OLTC actions at the zone substation might have in the performance of 
the proposed methodology.  
 
Thus, in this section, the case study presented in section 4.3.1 (random PV uptake) is repeated while 
also incorporating the corresponding actions of the zone substation OLTC. For this, 30-min resolution 
voltage measurements recorded for the year 2016 at the head of the corresponding HV feeder where 
provided by AusNet Services. These were then used in the power flow analyses to incorporate the 
corresponding OLTC effects by varying the voltage at the head of the HV feeder according to the 
provided data. While this assumption is adopted, it should be noted that is used here for demonstration 
purposes only. In practice, the OLTC zone substation actions are based on the loading conditions of 
multiple connected HV feeders (i.e., 6 in total), which are not modelled in this report; only one of these 
feeders (Urban HV Feeder U2) is considered. Also, the corresponding provided measurements do not 
consider the effects of simultaneously high penetration levels of PV systems (in all connected HV 
feeders) might have on the operation of the zone substation OLTC (i.e., reverse power flows, hence 
higher voltage at the HV head forcing the OLTC to reduce tap positions).   
 
Table 4-10 shows, the average HC capacity is slightly reduced (i.e., 289kW) compared to the case 
shown in section 4.3.1 (i.e., 320kW) and this is due to the fact that the OLTC actions are in general 
pushing the voltage slightly higher to cater for voltage drop issues. Interestingly, it is important to 
highlight that because of this, such actions might lead to cases where the voltage is leading to voltage 
violations at even lower penetration levels. This is indeed, shown in Table 4-10 where first voltage 
violation for this case was recorded at 18% of PV penetration level; a comparably lower value compared 
to all previous sections. This can also be visualised in Figure 4-7 where the maximum voltage in some 
of the days was significantly higher than the rest. 

Table 4-10 LV 24 – Random PV Uptake with OLTC: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 2.10 289 58 

First Voltage Violation 
(worst case) 

0.60 82 18 

 
In general, Figure 4-7 shows that the daily maximum voltage behaviour is aligned with the one shown 
in section 4.3.1 however, the effect of OLTC is resulting to a larger spread in terms of maximum voltages 
for the same imports/exports. Due to the latter, the confidence level of the HC estimation models shows 
to be low for smaller penetration level and progressively increasing for larger. In terms of prediction 
limits, the distance was found to be considerably larger when compared with section 4.3.1, regardless 
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the penetration level. This means, that the effect of the OLTC is affecting the performance of the 
proposed methodology. 
 
Considering the numerical results provided in Table 4-11Table 4-8, a higher accuracy error is noticed 
and the estimation range is larger for all penetration levels. While the performance of the HC estimation 
models is reduced because of the OLTC effects it is important to note that the average HC is successfully 
captured by the HC estimation range from as early as 10% PV penetration level. On the other hand, the 
proposed methodology fails to capture the first voltage violation within the models’ HC estimation range, 
regardless the penetration level. 
 

 

 

Figure 4-7 LV 24 – Random PV Uptake with OLTC: HC Estimation at different PV penetrations 

Table 4-11 LV 24 – Random PV Uptake with OLTC: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 
3.57 2.25 2.95 2.37 2.59 2.25 2.29 2.13 2.07 2.07 

Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [1.65-10.0] [1.11-3.63] [1.49-4.63] [1.15-3.63] [1.25-3.97] [1.01-3.49] [1.03-3.55] [0.91-3.35] [0.89-3.25] [0.89-3.25] 

Actual HC within 
HC Estimation range? 

YES YES YES YES YES YES YES YES YES YES 

First voltage violation within 
HC Estimation range? NO NO NO NO NO NO NO NO NO NO 

Accuracy Error (%) 
Estimated HC vs Actual HC 

70 7 40 13 23 7 9 1 1 1 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

493 310 407 327 357 310 316 294 286 286 

 
In terms of the overall performance, while the average accuracy errors were found to be higher than 
section 4.3.1, the proposed methodology can provide meaningful estimations from 10% of PV 
penetration and onwards. In more details, at 10% penetration, the actual HC for 79% of the LV networks 
was included in the proposed methodology estimation range, while the same number increased to 86% 
and 96% for 20 and 40% PV penetrations, respectively. However, the proposed methodology’s 
estimation range ability to cover potential outliers (i.e., worst case scenario) is significantly reduced by 
the OLTC control actions. 
 

EndMiddleHead
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Once again, it is important to highlight that while this analysis shows that the zone substation OLTC 
actions are expected to affect the performance of the proposed methodology, this was based on data 
that might not represent the actual control actions; hence, it might underestimate or overestimate the 
corresponding performance effects.  
 

Table 4-12 All LV Networks – Random PV Uptake with OLTC: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 69 36 39 26 25 18 16 12 10 10 

Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
79 86 86 96 96 96 96 100 100 100 

Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

11 25 18 25 25 32 32 32 32 36 

4.4 Case Study 2 – Rural HV Feeder R1 (SMR8) 
This section presents a case study performed on the rural HV Feeder R1 (SMR8) considering the 
proposed Smart Meter-Driven hosting capacity estimation methodology. It should be noted that given 
the nature of rural HV feeders (i.e., long, high number of LV networks), the corresponding connected LV 
networks are considerably smaller compared to those in urban HV feeders consisting of lower number 
of customers (usually less than 100) and lower number of LV feeders (up to 2). Such analysis will help 
understand the performance of the proposed HC capacity estimation methodology on feeders with 
significantly different characteristics. As such, the performance and ability to estimate the HC capacity 
of LV networks with the proposed methodology is assessed using 5-year hybrid smart meter data 
produced using the approach detailed in chapter 2. To thoroughly assess the performance of the 
proposed HC estimation methodology, three hybrid smart meter datasets are produced considering 
three different PV uptake trends through the duration of 5-years analysis. These are listed below:  
 

d) Random PV Uptake. New PV system installations are randomly allocated to customers within 
the LV networks. A random allocation of PV systems represents a very realistic scenario which 
is currently seen in practice (i.e., residential PV systems are adopted by customers located at 
different locations within the network).  

e) Head to End PV Uptake. New PV systems are allocated first to customers closer to the head 
of the LV feeders and then moving towards those at the far end. While unlikely, it represents 
one of the two extreme scenarios. It leads to the highest PV hosting capacity as the effect of 
voltage rise is in general lower for points closer to the head of the feeder (i.e., smaller 
impedance, hence smaller voltage drop/rise). 

f) End to Head PV Uptake. New PV systems are allocated first to customers at the far end of the 
LV feeders and then moving towards those at the head. While also unlikely, it represents the 
other extreme scenario. It leads to the lowest PV hosting capacity as the effect of voltage rise 
is in general higher for points farther from the head of the feeder (i.e., larger impedance, hence 
larger voltage drop/rise). 

 
While the case study considered all 705 residential LV networks connected in the HV Feeder R2 
(SMR8), for demonstration purposes, detailed results are provided only for the LV Network 236, which 
supplies 76 residential customers (connected on two feeders) through a 200kVA transformer. The 
overall performance considering all 705 LV networks is given in Table 4-3.  
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4.4.1 Random PV Uptake 
Considering all smart meter data for this LV network, on average, the HC was found to be 109kW of 
exports (1.44kW diversified), and this value is used to assess the performance of the HC estimation 
model. For comparison purposes, the aggregated power of the fist voltage violation (i.e., 105kW-
aggregated/1.39kW-diversified exports) is considered to also understand the extent to which the model’s 
prediction limits cover potential outliers (i.e., worst case scenario). These are also shown in Table 4-13. 

Table 4-13 LV 236 – Random PV Uptake: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 1.44 109 36 

First Voltage Violation 
(worst case) 

1.39 105 35 

 

 

 

Figure 4-8 LV 236 – Random PV Uptake: HC Estimation at different PV penetrations 

Considering the performance, Figure 4-8 and Table 4-14, show that the accuracy error (i.e., percentage 
difference of estimation from actual) of the models, regardless the penetration level, is very low (<7%), 
highlighting that the estimated HC has a much better accuracy compared to the cases shown in the 
previous case study (urban feeder). The higher accuracy of HC estimations at earlier PV penetrations 
can be explained due to the lower number of customers and feeders (up to 2) in rural LV networks. This 
means that the impacts of PV installations in a given LV network will evolve consistently, i.e., higher 
voltages will be seen with more PV installations (which is not the case in urban LV networks with multiple 
feeders due to the diversity in length and customer numbers). This consistency allows the HC estimation 
model to capture the effects more accurately and at earlier PV penetrations. Moreover, considering the 
first voltage violation recorded in by the smart meters (occurred at around 35% of PV penetration), the 
corresponding aggregated power for this case (105kW of exports) was successfully captured within the 
models’ HC estimation range as early as 10% of PV penetration.  

Table 4-14 LV 236 – Random PV Uptake: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 
1.49 1.81 1.37 1.45 1.43 1.33 1.33 1.33 1.37 1.45 

EndMiddleHead
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Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [1.13-1.91] [1.35-2.31] [0.85-1.91] [0.89-1.99] [0.87-1.97] [0.81-1.87] [0.79-1.87] [0.79-1.85] [0.75-1.99] [0.61-2.29] 

Actual HC within 
HC Estimation range? YES YES YES YES YES YES YES YES YES YES 

First voltage violation within 
HC Estimation range? YES YES YES YES YES YES YES YES YES YES 

Accuracy Error (%) 
Estimated HC vs Actual HC 3 25 4 0 0 7 7 7 4 0 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

113 138 104 110 109 101 101 101 104 110 

 
To understand the overall performance of the proposed methodology, the average accuracy error of the 
estimated HC is calculated for each penetration level and for all LV networks (total of 41) that 
experienced voltage violations. Moreover, for each penetration level, the percentage of LV networks for 
which the HC estimation range successfully covered the average HC (calculated using smart meter 
data) and the first voltage violation, are provided. In general, the average accuracy error appears to be 
higher for low penetration levels and reduces with higher penetrations. Overall, it was found that the 
proposed methodology can provide meaningful estimations from as early as 30% of PV penetration. In 
more details, at 30% penetration, the actual HC for 81% of the LV networks was included in the proposed 
methodology estimation range, while the same number increased 83% and 86% for 40 and 50% PV 
penetrations, respectively. More importantly, a very similar performance is observed for the case of first 
voltage violation, which shows that the proposed methodology can cover potential outliers (i.e., worst 
case scenario). 

Table 4-15 All LV Networks – Random PV Uptake: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 43 44 35 26 21 17 12 9 7 7 

Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
88 69 76 83 86 95 100 100 100 100 

Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

86 71 76 86 93 95 100 100 100 100 

4.4.2 Head to End PV Uptake 
Similar to the section 4.4.1, the analysis was performed considering a head to end PV uptake where the 
new PV systems are allocated first to the customers located closer to the head of the LV feeders and 
lastly to the customers located at the far ends. Given that the effect of voltage rise is in general lower 
for points closer to the head of the feeder (i.e., smaller impedance, hence smaller voltage drop/rise), the 
HC capacity of the LV network was expected to be larger than the random PV uptake case. Indeed, as 
Table 4-16 shows, the average HC capacity was found to be to be 196kW of exports (2.58kW 
diversified), while the aggregated power of the fist voltage violation was 177kW (2.33kW diversified) 
exports. In general, such PV uptake trend, compared to the previous, led to almost 30% more customers 
with a PV system. These numbers of HC are then used to assess the performance of the proposed 
methodology in the extreme scenario of such PV uptake trend. 

Table 4-16 LV 236 – Head to End PV Uptake: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 2.58 196 66 
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First Voltage Violation 
(worst case) 

2.33 177 63 

 
While the magnitude of the daily maximum voltage, in this case, shows to have the same behaviour as 
the previous case (increasing with the penetration levels), the voltage rise effect from penetration to 
penetration is, as expected, significantly smaller. As a result of this, the PV penetration level leading to 
voltages that violate the upper statutory limit (i.e., 1.1 p.u.) is shifted to 66% (i.e., 30% more than 
previous case). Considering the location (i.e., data points colour) of the maximum voltage, shows that 
this is starting from the head of the feeder (blue data points) and slowly transitioning to the end of the 
feeder (red data points) at higher penetration levels. This as explained in the previous case study is the 
effect of new PV installations happening systematically to those customers located closer to the head 
of the feeders and slowly moving to the next customers until a 100% penetration is achieved. 

 

 

Figure 4-9 LV 236 – Head to End PV Uptake: HC Estimation at different PV penetrations 

Considering the performance, results show that the proposed method in this case is providing a very 
good performance compared to the one in section 4.3.2. In more details, the accuracy error is 
considerably lower for all penetration levels (average of ~8%). Moreover, it is shown that the proposed 
methodology estimation range can provide accurate and meaningful results from as low as 20% of PV 
penetration level; the average HC is successfully included in the estimation range. 

Table 4-17 LV 236 – Head to End PV Uptake: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 
1.89 2.61 2.81 2.99 2.81 2.71 2.65 2.69 2.67 2.41 

Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [1.55-2.29] [2.23-3.01] [2.37-3.25] [2.47-3.51] [2.31-3.33] [2.21-3.23] [2.11-3.19] [2.13-3.25] [2.09-3.25] [1.59-3.25] 

Actual HC within 
HC Estimation range? NO YES YES YES YES YES YES YES YES YES 

First voltage violation within 
HC Estimation range? NO YES NO NO YES YES YES YES YES YES 

Accuracy Error (%) 
Estimated HC vs Actual HC 26 1 9 16 9 5 2 4 3 6 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

144 198 214 227 214 206 201 204 203 183 

 

EndMiddleHead
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In terms of the overall performance of the proposed methodology for this particular case, Table 4-18, 
shows that the average accuracy error, considering all LV networks that experience voltage violations 
(total of 41), was very similar with the one found in section 4.4.1. Moreover, the percentage of the LV 
networks where their average HC and first voltage violation was included in the proposed methodology 
estimation range was found to be high (average of 86%) for all penetration levels. More importantly, a 
very similar performance is observed for the case of first voltage violation, which shows that the 
proposed methodology can cover potential outliers (i.e., worst case scenarios). 
 
Compared to the section 4.3.2, the comparably higher performance found in this case can be explained 
due to the relatively lower number of LV feeders (up to 2) and customers (usually less than 100) found 
in rural LV networks. This reduces the effects of having different lengths of feeders and number of 
customers; hence leading to different voltage rise effect compared to other feeders in the same network.  

Table 4-18 All LV Networks – Head to End PV Uptake: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 45 57 35 24 22 21 21 17 13 8 

Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
86 62 76 81 86 88 88 95 100 100 

Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

79 64 71 81 86 88 95 100 100 100 

4.4.3 End to Head PV Uptake 
Considering an end to head PV uptake tend, Table 4-7, shows that the average HC capacity of the LV 
network, was 75kW of exports (0.99kW diversified) with the fist voltage violation recorded at 22kW 
(0.29kW diversified) of exports. These results show that such uptake trend can potentially lead to 16% 
and 46% less customers with a PV system compared to the random and head to end uptake trends, 
respectively. These numbers of HC are then used to assess the performance of the proposed 
methodology in the extreme scenario of such PV uptake trend. 

Table 4-19 LV 236 – End to Head PV Uptake: HC based on Smart Meter Data 

 Diversified kW Aggregated kW Penetration (%) 
Average HC 0.99 75 20 

First Voltage Violation 
(worst case) 

0.29 22 15 

 
While the magnitude of the daily maximum voltage, in this case, shows to have the same behaviour as 
the previous cases (increasing with the penetration levels), the voltage rise effect from penetration to 
penetration is significantly larger. As a result of this, the PV penetration level leading to voltages that 
violate the upper statutory limit (i.e., 1.1 p.u.) is reached as early as 20%.  
 
Considering the performance, Figure 4-10 and Table 4-21, show that the error can be relatively high 
(average of 36%) for low penetration levels and this reduces with higher penetrations. While errors exist, 
it is important to highlight that the actual average HC is successfully captured in the model’s estimation 
range as early as 10% penetration. More importantly, the first voltage violation (i.e., 1.104p.u.) recorded 
by the smart meters (occurred at around 15% of penetration), was also successfully captured within the 
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models’ HC estimation range as early as 10% penetration. These results highlight the effectiveness of 
the model to provide meaningful HC estimations from early penetration levels.  
 

 

 

Figure 4-10 LV 236 – End to Head PV Uptake: HC Estimation at different PV penetrations 

Table 4-20 LV 236 – End to Head PV Uptake: Performance of HC Estimation Model 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  

Diversified P (kW) 
1.25 0.53 0.61 0.83 0.89 0.93 0.97 1.07 1.13 1.19 

Estimation HC Range 
[𝑋ℎ𝑐−99ℎ𝑖𝑔ℎ , 𝑋ℎ𝑐−99𝑙𝑜𝑤] [0.61-2.09] [0.07-1.01] [0.13-1.11] [0.13-1.53] [0.17-1.63] [0.19-1.67] [0.21-1.75] [0.09-2.03] [0.01-2.27] [0.13-2.51] 

Actual HC within 
HC Estimation range? YES YES YES YES YES YES YES YES YES YES 

First voltage violation within 
HC Estimation range? NO YES YES YES YES YES YES YES YES YES 

Accuracy Error (%) 
Estimated HC vs Actual HC 26 46 38 15 9 5 1 8 14 20 

Estimated HC (𝑋ℎ𝑐−𝑚𝑜𝑑𝑒𝑙)  
Aggregated P (kW) 

95 40 46 63 68 71 74 81 86 90 

 
Considering the overall performance, the average accuracy error is aligned with the results shown in 
previous sections, where the error appears to be higher for low penetration levels and reduces with 
higher penetrations. Overall, it was found that the proposed methodology can provide meaningful 
estimations from 10% of PV penetration and onwards. In more details, at 10% penetration, the actual 
HC for 62% of the LV networks was included in the proposed methodology estimation range, while the 
same number increased to 81% and 83% for 20 and 30% PV penetrations, respectively. More 
importantly, a very similar performance is observed for the case of first voltage violation, which shows 
that the proposed methodology can cover potential outliers (i.e., worst case scenario). 

Table 4-21 All LV Networks – End to Head PV Uptake: Overall Performance 

Penetration Level 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Average Accuracy Error (%) 79 30 30 24 21 15 11 7 7 9 

EndMiddleHead
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Percentage (%) of LV networks 
where Average HC was included  

in the HC Estimation range 
62 81 83 85 88 95 100 100 98 100 

Percentage (%) of LV networks 
where the first voltage violation was 
included in the HC Estimation range 

45 88 86 90 90 98 100 100 98 100 
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5 Conclusions 
This document corresponds to “Deliverable 2: Innovative Analytical Techniques” part of the project 
Advanced Planning of PV-Rich Distribution Networks funded by the Australian Renewable Energy 
Agency (ARENA) and led by the University of Melbourne in collaboration with AusNet Services. It 
focuses on the methodology and assessment of a smart meter-driven analytical technique proposed by 
The University of Melbourne to estimate PV hosting capacity in distribution networks; two significantly 
different HV feeders, urban and rural, are considered.  
 
Chapter 1 introduced the current state of residential PV system installations in Australia and the 
technical and operation challenges the widespread adoption of these might bring to the Distribution 
Network Service Providers (DNSPs).  
 
Chapter 2 provided some additional modelling aspects and assumptions are considered for the HV-LV 
feeders presented in Deliverable 1. These were based on updated information and data provided by 
AusNet Services and corresponded to: 

• An updated model of the Urban HV Feeder U2 (CRE21). The updates focus on the total number 
of residential and non-residential LV networks as well as the total number of residential and 
non-residential customers connected in each LV network. 

• An updated operation of the HV capacitors. All HV capacitors located in the modelled HV 
feeders are now modelled with voltage-based operation (instead of time-based) so that their 
operation is aligned with the current practice. 

 
Chapter 3 presented and described a small volume of smart meter data provided by AusNet Services 
and correspond to 2 days’ worth of 5-min resolution encrypted and anonymised data from ~3000 
residential customers for the Urban HV Feeder U2 (CRE21). While the provided smart meter, data 
contained enough measurements (P, Q, V) from customers with PV system installations (20% of 
customers with PV systems), it was not possible to extract meaningful correlations between the PV 
penetration and its effects (i.e., voltage rise). This can only be captured by historical data that covers 
the evolution of PV penetration in time, however, given the significant challenges related to data privacy 
and confidentiality issues the facilitation of additional multiple days of historical smart meter data to The 
University of Melbourne was not possible. 
 
To tackle the aforementioned challenges and help develop and validate those analytical techniques that 
can be used to estimate the Hosting Capacity of LV networks in a given HV feeder, a methodology is 
proposed in Chapter 3 to produce a large volume of smart meter data (referred here as hybrid smart 
meter data) for each customer in the modelled HV feeders. These smart meter data consider a realistic 
progressive adoption of PV systems (i.e., 0 to 100% of customers with PV, in a given HV feeder) through 
a horizon of 5-years. For this actual anonymised demand (P, Q) and irradiance profiles from a previous 
project “AusNet Mini Grid Clusters” were used to run unbalanced, 30-min resolution, time-series, three-
phase four-wire power flows for multiple days to extract customer voltages, V. In total, the database of 
the hybrid smart meter data (P, Q, V) produced for each HV-LV Feeder consists of more than 1 billion 
data points (>3Gb). 
 
With the corresponding hybrid smart meter data at hand and leveraging statistical techniques, daily 
correlations between the data were identified that hinted the direction towards the analytical approach 
to be adopted. For each LV network, a very strong linear correlation was found between the maximum 
voltage on a given day and the corresponding sum of all smart meter active powers (P, which can be 
negative due to PV systems). These two features were used as inputs to the proposed Smart Meter-
Driven PV Hosting Capacity Estimation methodology. 
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Chapter 4 presented the proposed analytical technique that makes use of smart meter data to construct 
a statistical regression model for each LV network, in a given HV feeder, and estimate its corresponding 
PV hosting capacity. The performance of the proposed hosting capacity estimation (HC estimation) 
methodology was assessed under three different PV system uptake trends, as well as considering the 
effects of network controllable elements such as the zone substation OLTC.  
 
The proposed Smart Meter-Driven Hosting Capacity Estimation is based on a simple, yet practical, 
machine learning algorithm, a methodology is proposed to produce a regression model to estimate the 
PV hosting capacity in any given LV network using smart meter data. The main steps of the 
methodology, as if implemented by a DNSP, are presented below. 

• Smart meter database. For a given number of days (ideally covering most of the evolution of 
PV penetrations to date), the daily smart meter data (i.e., P, Q, V) from all customers in a given 
LV network are extracted from the smart meter database. 

• Data Processing. The smart meter data are analysed and cleaned from missing and inconsistent 
values. Then, the maximum voltage recorded for each day is identified and the corresponding 
(same timestamp) active powers are added up. Finally, a new dataset is produced containing 
the maximum voltage and the corresponding aggregated power for each day. 

• HC Estimation Model. The new dataset is used to train a supervised (i.e., gradient decent) 
univariate regression model which corresponds to the HC estimation model for the analysed LV 
network. 
 

The proposed Smart Meter-Driven Hosting Capacity Estimation model, in effect, estimates the 
aggregated active power (that can be negative due to PV systems) that can lead to voltages outside a 
pre-determined upper limit (e.g., 1.1 p.u.). This value, in turn, can be used to calculate the additional PV 
capacity that can be hosted by the LV network. Nonetheless, to understand what the HC Estimation 
might mean across customers, the estimated aggregated active power is presented as the diversified 
active power per customer. The latter also includes prediction limits to cater for uncertainties. 
 
In terms of the accuracy of the model, it is important to highlight that the volume of smart meter data 
used to produce the HC estimation model plays an important role. More data helps to capture the 
variance of a larger sample of network conditions (i.e., voltage vs active power), thus increasing the 
model’s estimation accuracy. 

 
The performance of the proposed HC estimation methodology was demonstrated and thoroughly 
assessed on two significantly different HV-LV feeders (urban and a rural) and the assessment 
considered the following three different PV uptake trends through a horizon of 5 years.  
 

• Random PV Uptake. New PV system installations are randomly allocated to customers within 
the LV networks. A random allocation of PV systems represents a very realistic scenario which 
is currently seen in practice (i.e., residential PV systems are adopted by customers located at 
different locations within the network).  

• Head to End PV Uptake. New PV systems are allocated first to customers closer to the head of 
the LV feeders and then moving towards those at the far end. While unlikely, it represents one 
of the two extreme scenarios. It leads to the highest PV hosting capacity as the effect of voltage 
rise is in general lower for points closer to the head of the feeder (i.e., smaller impedance, hence 
smaller voltage drop/rise). 

• End to Head PV Uptake. New PV systems are allocated first to customers at the far end of the 
LV feeders and then moving towards those at the head. While also unlikely, it represents the 
other extreme scenario. It leads to the lowest PV hosting capacity as the effect of voltage rise 
is in general higher for points farther from the head of the feeder (i.e., larger impedance, hence 
larger voltage drop/rise).  
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Considering the Urban Feeder U2 (CRE21), it was found that the proposed methodology can provide 
meaningful and adequate HC estimations for this and similar urban feeders. In this case, such 
estimations were achieved from as early as 30% of PV penetration for the Random PV and End to Head 
PV uptake trends.  
 
For the Head to End uptake trend, it was found that early PV penetrations did not result in significant 
impacts, resulting in slight HC overestimations. This is primarily due the fact that customers expected to 
affect voltage rise the most (i.e., farthest customers) are the last installing a PV system; hence, the HC 
model cannot capture these effects until high PV penetration levels (i.e., >60%). Moreover, due to the 
relatively higher number of customers (>100) and feeders (>2) in urban LV networks, significant diversity 
can exist in terms of the LV feeders’ length and number of customers in the same network. This makes 
the estimation of HC more challenging in such uptake trend. For example, a new PV installation at the 
end of a long feeder with many customers might have a completely different voltage rise effect compared 
to another with shorter length and lower number of customers. 
 
A further analysis using SCADA data from 2016 to represent the zone substation’s OLTC actions was 
carried out. Although these voltage changes might not capture how the CRE21 OLTC would in reality 
act with the different PV penetrations, it was found that it can slightly reduce the accuracy of the HC 
estimations. Furthermore, because of a higher number of outliers (voltage spikes), the ability of the HC 
estimation model to include them in the prediction limits reduces. 
 
As for the Rural HV Feeder R1 (SMR8), it was found that the proposed methodology can have a much 
better performance in this and similar rural feeders as it is able to provide meaningful and adequate HC 
estimations from much earlier PV penetrations regardless the PV uptake trend. In this case, such 
estimations were achieved with as little as 10% PV penetration. 
 
The higher accuracy of HC estimations at earlier PV penetrations can be explained due to the lower 
number of customers and feeders (up to 2) in rural LV networks. This means that the impacts of PV 
installations in a given LV network will evolve consistently, i.e., higher voltages will be seen with more 
PV installations (which is not the case in urban LV networks with multiple feeders due to the diversity in 
length and customer numbers). This consistency of allows the HC estimation model to capture the 
effects more accurately and at earlier PV penetrations. 
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6 Next Steps 
The next steps to be carried out by The University of Melbourne for the “Advanced Planning of PV-Rich 
Distribution Networks” project include: 
 
Task 3 Traditional Solutions 
This task will investigate the use of traditional solutions such as network augmentation and/or change 
of off-load tap changer positions to increase hosting capacity. An advanced stochastic augmentation 
assessment methodology will be developed that significantly departs from traditional augmentation 
analyses (commonly based on deterministic, worst-case scenarios, and often ignoring aggregated 
congestion issues in HV networks due to solar PV in LV networks). The methodology will be 
demonstrated by quantifying the level of network augmentation required to meet PV penetrations 
expected in the horizon(s) of interest (e.g., 5 years). 
 
Deliverable 4: Traditional Solutions (Delivery Date: 10th February 2020) 
Synopsis: A technical report presenting the methodology and initial findings corresponding to the use of 
traditional solutions to increase PV hosting capacity. 
 
Deliverable 5: Workshop (Delivery Date: February 2020) 
Synopsis: A workshop presenting the key findings from the first year of the project.  
 
Deliverable 6: International Conference (Delivery Date: February 2020) 
Synopsis: Findings of from the first year of the project are expected to be presented as academic papers 
to the international community at top-class conferences. 
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