

(a) Flexib	le solar-to-fuel devic	e
	H ₂ H ⁺ H ₂ H ⁺ H ₂ O ² H ₂ H ⁺ H ₂ H ₂ O ² heat heat	He elastomer graphe membr

Schematic of the floating platform for H₂ generation

- > Fabricating large-scale, dual-chamber floating device uses only natural sunlight to simultaneously produce cost effective green hydrogen, degrade organic species and purify wastewater.
- > proposing innovative approach to hydrogen production by establishing a fully solardriven hydrogen-from-wastewater floating device.
- > Overcoming the solar-accessibility limitations towards cost-effective green hydrogen production at \$2.5/kg of hydrogen.

Disclaimer: The views expressed herein are not necessarily the views of the Australian Government. The Australian Government does not accept responsibility for any information or advice within this document.

Solar-Energy-Driven Modular Floatable Device for Scalable Green Hydrogen Production From Wastewater

This project received funding from the Australian Renewable Energy Agency (ARENA) as part of ARENA's Transformative Research Accelerating Commercialisation (TRAC) Program.

manufacturing

Commercialisation

UNSW SYDNEY *

	2024	2025	2026	2027	2028	2029
e of	We are here					
mall e ce						
cale Init						
e 1m2 ce						
e and 2 ce						
nomic Id isation						

1m x 1m solar-energy-driven floating device following by delivering of a 4m x 5m solar-energy-driven floating

technology and readiness production hydrogen Of

Development, deployment and commercialisation of

South East Water :-----

Contact: Prof. Tianyi Ma, Tianyi.ma@rmit.edu.au, 124 La Trobe St. Melbourne VIC