Skip to Content
Project overview
  • Lead Organisation

    University of New South Wales

    Location

    Sydney, New South Wales

    ARENA Program

    Advancing Renewables Program

  • Start date

    6 December 2017

    End date

    30 June 2023

  • Project Partners
    None

Summary

The UNSW School of Photovoltaic and Renewable Energy Engineering has received a funding grant from ARENA to conduct a research and development project which address the performance and cost limitations of current PERC technology by transformation into PERL technology for industrial environments by incorporating multiple separately proven technologies.

Hydrogen passivation will be used to neutralise defects in the silicon material and laser doping and bifacial plating will be used for a low-cost implementation of a PERL structure.

Key results

The processes developed in this project have been transferred to an industrial partner and they have fabricated such cells using industrial equipment and reaching efficiencies of up to 23%.

Both types of cells have been light soaked to test for Light Induced Degradation (LID). Using an industry standard light soaking process, the cells lose less than 1% relative efficiency due to LID. A 21.3% bifacial module of bifacial plated PERC cells has also been made.

Future work will involve further optimisation of the industrial prototype tools to achieve desired and reliable plating metallization in not only Passivated Emitter, Rear Locally (PERL) diffused cell, but also other types of high efficiency solar cells (e.g. TOPCon, SHJ).

How the project works

The Hydrogenated Bifacial PERL Silicon PV Cells project is a key initiative of ARENA’s 2017 Investment Plan for accelerating solar PV innovation. The project will combine three separate technologies that were developed in previous ARENA projects. The study will integrate hydrogen passivation, laser doping and bifacial plating into the current PERC solar cell technology to overcome performance limitations and reduce cost.

One of the key outcomes for the project is to develop an industrial PERL technology to increase cell efficiencies to over 24%.

Area of innovation

The Hydrogenated Bifacial PERL Silicon PV Cells project will integrate three innovative technologies into the current PERC solar cell process to develop the next generation high-efficiency solar cell technology for commercial production. Laser doping will allow the formation of localised heavily doped regions for the PERL structure. Bifacial plating will reduce cost of metal deposition and enable the generation of current from both front and rear surfaces of the cell. The advanced hydrogenation technology will eliminate light induced degradation and improve stability of the solar cells.

Benefit

The project will generate new knowledge on the development of high-efficiency p-type solar cells using innovative, high-throughput commercial production processes and equipment. This will increase the efficiency and reduce the cost of industrial p-type solar cells and generate new intellectual property.

Last updated 20 March 2023
Print Friendly, PDF & Email
Back to top