Skip to Content
Project overview
  • Lead Organisation

    University of New South Wales

    Location

    New South Wales

    ARENA Program

    Advancing Renewables Program

  • Start date

    1 August 2018

    End date

    17 April 2023

  • Project Partners
    Beijing Origin Water Technology, Apricus Energy

Summary

Extracting hydrogen from biomass represents a valuable approach by which a waste organic stream can be converted into hydrogen (or hydrogen-carriers) for downstream use or as an exportable commodity.

The Waste Biomass to Renewable Hydrogen project aims to develop a biomass reforming system capable of extracting hydrogen and/or hydrogen-carriers – such as bio-alcohols and bio-acids – from biomass. The biomass reforming system will comprise a biomass pre-conditioning reactor (BPR) coupled with a flow electrolyser cell (FEC) to produce renewable hydrogen without any carbon dioxide emissions.

Key results

This project successfully built and commissioned a micro-tubular reactor for catalyst screening and reactor performance tests. The miniaturised methanol production as hydrogen carrier from biomass pyrolysis syngas is technically feasible and economically viable under the current demand-supply-cost combination but vulnerable to external and market conditions. A comprehensive handbook was developed which documents the fundamental knowledge of methanol catalystic synthesis, and a design toolkit for the development, design, construction and operation of the minituarised methanol synthesis plant.

How the project works

Biomass is fed into the BPR where it is transformed into bio-alcohol/bio-acid hydrogen-carrying compounds. The BPR product stream is then passed into the FEC where the hydrogen is extracted and recovered. Energy requirements for the BPR (heat) and the FEC (electricity) are provided by the sun, captured using a solar concentrator (SC) tube array and a photovoltaic (PV) cell, respectively. The reforming system will be used to treat biomass provided by Beijing Origin Water Technology.

Area of innovation

The Waste Biomass to Renewable Hydrogen project contains two innovative aspects:

  1. Teaming the BPR with the FEC to convert waste biomass into renewable hydrogen gas or a hydrogen-carrier for export. The FEC effluent will also contain valuable organic by-products which can partly off-set system costs;
  2. Using an electrocatalyst in conjunction with a radical mediator in the FEC to reduce electrical energy demand and improve conversion. The radical mediator is an organic catalyst that is added to the FEC to assist with extracting hydrogen from the preconditioned biomass feed.

Benefit

Using biomass as a hydrogen source in the FEC has energy and economic advantages.Pre-conditioned biomass (from a raw biomass stream) can be provided at a very low cost. Electrocatalytic hydrogen extraction from the pre-conditioned biomass is generally easier than water electrolysis (i.e. water splitting). Biomass reforming by electrocatalysis is selective and scalable, delivers zero carbon dioxide emissions and can produce value-added organic products which can potentially serve as precursors for plastics fabrication. Development of the technology will help Australia become more competitive in generating and exporting renewable hydrogen and hydrogen-carriers.

Last updated 27 March 2023

ARENAWIRE Blogs

Cutting-edge hydrogen research in Australia

Researchers are developing new ways to export Australia’s renewable energy in the form of hydrogen.

How could renewable hydrogen power our lives?

Hydrogen offers a way to produce a renewable, emissions-free fuel using the power of the sun and wind.

ARENA awards $22 million to unlock hydrogen potential

In recent weeks, the buzz around the potential for hydrogen to unlock opportunities to export renewable energy to the world has gone from a light murmur to a loud hum.

Print Friendly, PDF & Email
Back to top